Power of x.
xn dx = xn+1 (n+1)-1 + C (n -1) | x-1 dx = ln|x| + C |
Exponential / Logarithmic
ex dx = ex + C | bx dx = bx / ln(b) + C |
ln(x) dx = x ln(x) - x + C |
Trigonometric
sin x dx = -cos x + C | csc x dx = - ln|csc x + cot x| + C |
cos x dx = sin x + C | sec x dx = ln|sec x + tan x| + C |
tan x dx = -ln|cos x| + C | cot x dx = ln|sin x| + C |
Trigonometric Result
cos x dx = sin x + C | csc x cot x dx = - csc x + C |
sin x dx = -cos x + C | sec x tan x dx = sec x + C |
sec2 x dx = tan x + C | csc2 x dx = - cot x + C |
Inverse Trigonometric
arc sin x dx = x arc sin x + (1-x2) + C |
arc csc x dx = x arc cos x - (1-x2) + C |
arc tan x dx = x arc tan x - (1/2) ln(1+x2) + C |
Inverse Trigonometric Result
|
|
Hyperbolic
sinh x dx = cosh x + C | csch x dx = ln |tanh(x/2)| + C |
cosh x dx = sinh x + C | sech x dx = arctan (sinh x) + C |
tanh x dx = ln (cosh x) + C | coth x dx = ln |sinh x| + C |
No comments:
Post a Comment