02 August 2010

Tables of Integrals

Power of x.

[integral]xn dx = xn+1 (n+1)-1 + C
(n -1)
[integral] x-1 dx = ln|x| + C

Exponential / Logarithmic

[integral] ex dx = ex + C
[integral] bx dx = bx / ln(b) + C

[integral]ln(x) dx = x ln(x) - x + C


Trigonometric

[integral] sin x dx = -cos x + C

[integral] csc x dx = - ln|csc x + cot x| + C

[integral] cos x dx = sin x + C

[integral] sec x dx = ln|sec x + tan x| + C

[integral] tan x dx = -ln|cos x| + C

[integral] cot x dx = ln|sin x| + C

Trigonometric Result

[integral] cos x dx = sin x + C

[integral] csc x cot x dx = - csc x + C

[integral] sin x dx = -cos x + C

[integral] sec x tan x dx = sec x + C

[integral] sec2 x dx = tan x + C

[integral]csc2 x dx = - cot x + C

Inverse Trigonometric

[integral] arc sin x dx = x arc sin x + [sqrt](1-x2) + C
[integral] arc csc x dx = x arc cos x - [sqrt](1-x2) + C
[integral] arc tan x dx = x arc tan x - (1/2) ln(1+x2) + C

Inverse Trigonometric Result

[integral] dx
[sqrt](1 - x2)
= arc sin x + C
[integral] dx
x sqrt(x2 - 1)
= arc sec|x| + C
[integral] dx
1 + x2
= arc tan x + C
Useful Identities

arccos x = pi/2 - arcsin x
(-1 <= x <= 1)

arccsc x = pi/2 - arcsec x
(|x| >= 1)

arccot x = pi/2 - arctan x
(for all x)

Hyperbolic
[integral] sinh x dx = cosh x + C

[integral] csch x dx = ln |tanh(x/2)| + C

[integral] cosh x dx = sinh x + C

[integral] sech x dx = arctan (sinh x) + C
[integral] tanh x dx = ln (cosh x) + C

[integral] coth x dx = ln |sinh x| + C

No comments:

Post a Comment